Notizie e approfondimenti sul clima che cambiaPosts RSS Comments RSS

Archive for the 'Meteorologia' Category

Come evitare una brutta figura…

Da giorni ormai i principali modelli meteorologici previsionali alla scala sinottica (GFS, ECMWF, UKMO, GEM, NOGAPS, JMA consultabili qui) prefigurano scenari invernali su tutta l’Europa: con buona probabilità a partire da sabato la progressiva espansione di un’area anticiclonica sulle Isole Britanniche e a seguire sul Mare del Nord, sulla Scandinavia occidentale, l’Islanda e infine sulla Groenlandia, orienterà le correnti a tutte le quote dai quadranti orientali favorendo la discesa sul vecchio continente di aria di matrice artica continentale, molto fredda. La prossima settimana sarà dunque caratterizzata con buona probabilità da un calo termico significativo e nevicate possibili sulla maggior parte del territorio europeo, localmente anche sulle coste del Mediterraneo.

.

Temperature al suolo previste in Europa durante le prime ore della mattina di
lunedì 14 dicembre (modello GFS)

.

Possibili temperature minime negative in doppia cifra nelle zone interne continentali, specialmente ove si verificheranno rasserenamenti notturni a seguito dell’irruzione di aria artica, percezione del freddo accentuata dai moderati venti orientali. Il Nord Italia probabilmente risentirà di questa prima irruzione orientale dell’inverno 2009-2010 con nevicate possibili in Pianura Padana a partire da lunedì, sensibile calo termico già da domenica. Ancor più accentuato il freddo a Copenhagen, ove non si escludono nevicate significative proprio nei giorni finali della Conferenza sul Clima. Continue Reading »

13 responses so far

I modelli del clima e la gestione dell’incertezza

Riassunto

Si discute in questo post dell’utilità dei modelli di simulazione del clima. Pur con le incertezze che caratterizzano le simulazioni climatiche, alcuni risultati prodotti dai GCM hanno una chiara e dimostrabile solidità. Hanno quindi un “valore”, nel senso che potrebbero permettere, da subito, di proporre azioni di adattamento per mitigare alcuni degli impatti negativi del cambiamento climatico, almeno in quelle aree del pianeta dove i risultati delle simulazioni sembrano essere più certi.

 

 

L’intervista di Giuliano Ferrara a Franco Prodi e Fulco Pratesi recentemente trasmessa da Radio 24 offre lo spunto per qualche riflessione su alcuni dei temi affrontati, che vanno dalla affidabilità degli strumenti in uso per la modellazione del Clima sino al ruolo degli scienziati nel contesto del dibattito sui cambiamenti climatici. Userò in questo post le tesi espresse durante l’intervista solo come pretesto per approfondire la discussione, senza alcuna intenzione di alimentare polemiche che a mio avviso non servono molto per la crescita delle conoscenze. Il tema centrale è quello di capire come debbano essere gestite le incertezze proprie degli strumenti della modellistica del clima al fine di fornire delle simulazioni Utili e di “Valore” (nel seguito svilupperò tale concetto) e che permettano ai policy-makers di scegliere ottimali azioni di adattamento e di mitigazione agli impatti del cambiamento climatico.

In sostanza nell’intervista Franco Prodi afferma che i General Circulation Model (GCM) sono ancora indietro ed incapaci di rappresentare le complessità del sistema integrato Atmosfera, Biosfera, Idrosfera. E quindi le simulazioni climatiche che ne derivano sono incerte e insicure e quindi con questi strumenti è molto difficile prendere decisioni. Sto sicuramente schematizzando ma mi sembra che il succo del discorso sia più o meno questo.

Alcune contestazioni possono essere fatte a queste tesi. Innanzi tutto non rappresentano bene la realtà attuale dei GCM e sembrano essere anche un po’ datate, nel senso che non fanno giustizia del grande processo di miglioramento percorso nel campo della modellistica climatica in questi ultimi 15-20 anni (si guardi ad esempio ai risultati del progetto Ensembles finanziato dalla Unione Europea). In seconda battuta viene anche da chiedersi come ci si potrebbe muovere in questo settore senza utilizzare i GCM, pur con tutte le loro incertezze, nonché con tutti i sistemi di regionalizzazione del clima, siano essi di natura deterministica (i modelli regionali del clima, RCM, vedasi la home page del progetto UE-Prudence: http://prudence.dmi.dk/) piuttosto che dinamico-statistica (vedasi la homepage del progetto EU Stardex: http://www.cru.uea.ac.uk/cru/projects/stardex/).

Per di più, frenando l’uso della modellistica globale in quanto ancora “acerba” nel suo livello di descrizione delle complessità del sistema Atmosfera-idrosfera-biosfera, viene da chiedersi come si possa allo stesso tempo sperare di poter disporre in un qualche futuro di quell’ “earth model” a cui si fa riferimento nell’intervista, in grado di fornire quelle “certezze” che oggi non abbiamo. Sempre schematizzando, se comprendo bene le argomentazioni di FP, un modello del clima, per poter essere usato, dovrebbe essere sostanzialmente “perfetto”, nel senso che dovrebbe rappresentare “tutti” i processi fisici presenti in atmosfera, “tutti” i feedback, “tutte” le non linearità, “tutte” le scale di moto. Se così stanno i termini del problema, c’è qualche speranza di successo in questa pretesa di perfezione ?

Intanto la prima cosa da chiedersi è perché si usano i modelli e se si potrebbe farne a meno.

Per sviluppare il ragionamento devo fare una piccola digressione, tornando un attimo all’abc della fisica dell’atmosfera. Come noto, il sistema atmosfera non è un laboratorio galileiano in senso stretto, in quanto è impossibile soddisfare l’esigenza di ripetibilità di un esperimento all’interno di un laboratorio “per definizione” non riproducibile. E’ solo merito della modellistica se è possibile oggi, in senso più ampio, compiere degli “esperimenti”, in genere chiamati “esperimenti numerici” all’interno di un “laboratorio virtuale” che simula l’atmosfera reale. E’ oggi possibile, grazie ai modelli di atmosfera trascritti su codici di calcolo e mediante l’uso di supercomputer, usare l’atmosfera del modello al posto della realtà ed eseguire al suo interno studi di sensitivity, valutando scenari diversi al variare di qualche parametro: possiamo alzare o abbassare montagne, modificare tipi di suolo e crearne diversi scenari di umidità, proporre forcing esterni diversi (ad esempio di gas serra), mutare l’input radiativo da parte del sole. E’ possibile con i modelli ri-creare artificialmente quel “laboratorio” che ogni scienza che si rispetti deve avere per il solo stesso fatto di essere classificata come scienza. Va da se che essendo una riproduzione della realtà, il laboratorio “modello GCM” non è la realtà. E quindi contiene delle inevitabili approssimazioni e, talvolta, anche gravi inesattezze. La domanda che ci si pone relativa alla legittimità di un loro uso è quindi fondata e merita una risposta non frettolosa.

Per rispondere è utile fare un parallelismo con i modelli che permettono ai previsori meteo di fare le previsioni del tempo e che sono parenti stretti dei GCM che si usano per il clima, almeno per quanto riguarda la forma dell’apparato matematico che li caratterizza (set di equazioni differenziali che descrivono i processi di conservazione di energia, momento, acqua e che caratterizzano la meccanica e termodinamica dell’atmosfera e degli oceani). Anche in questo caso i modelli numerici di previsione sono inesatti (Numerical Weather Prediction models, NWP, per saperne di più, ottimo è il link alle lecture notes di ECMWF).

Sussistono dei problemi di sensibilità ai valori iniziali a causa della non linearità delle equazioni che caratterizzano modelli del genere. La loro parte “adiabatica” (che descrive ad esempio le avvezioni di temperatura o di quantità di moto) è in genere meglio descritta dai processi “fisici”, quali ad esempio quelli che descrivono il trasporto di calore verso o dal suolo, la microfisica delle nubi, i processi radiativi, i fenomeni convettivi ecc.. Il risultato di queste incertezze descrittive si traduce in errori di previsione: capita quindi che tali modelli facciano piovere troppo o troppo poco oppure presentino errori di localizzazione, nello spazio e nel tempo, dei massimi di pioggia o di altre idrometeore come la neve, così come di anomalie del campo termico o anemologico. Certi fallimenti di previsione siano più frequenti in concomitanza di certe tipologie di configurazioni “bariche”, mentre in altre gli errori sono inferiori. Così come pure la qualità delle previsioni dipende in buona parte anche dalle stagioni.

C’è allora da chiedersi: ma i modelli NWP rappresentano bene la realtà ?

La risposta è, ineluttabilmente: talvolta si, talvolta no. E, con tale consapevolezza, è bene usare questi strumenti per fare le previsioni meteo? La risposta può essere, a mio parere, solo positiva. Oggi nessun previsore meteo al mondo può fare a meno di usare questi strumenti se si pone l’obiettivo di cercare di prevedere il tempo in maniera “quantitativa” su un orizzonte temporale di 2-10 giorni. A tal riguardo c’è anche da chiedersi cosa ne sarebbe della Scienza della Previsione del tempo se all’inizio degli anni ’50 Fjörtoft, Charney e von Neumann (Numerical integration of the barotropic vorticity equation; 1950, Tellus, 2, 237-254) non avessero proposto di usare la loro semplificata modellistica meteorologica usando un modello barotropico dell’atmosfera, che è un lontano antenato dei modelli a equazioni primitive che si usano oggi. Magari, se così non fosse stato, oggi saremmo ancora qui a parlare di…“presagi” e non invece, ad esempio, di previsioni quantitative di occorrenza di piogge in una data area e in un dato istante temporale. (Il materiale sulla storia della previsione numerica è praticamente infinito, suggerisco questa presentazione di Adrian Simmons, scaricabile dal sito di ECMWF: http://www.ecmwf.int/publications/unpublished/2006/temperton/pdf/simmons.pdf)

In ogni caso, pur con tutte le incertezze del caso su cui ho detto poco fa, con questi modelli “incerti” si possono fare, almeno in media, decorose previsioni meteo, in grado di permettere ai decisori…di decidere. E’ infatti grazie a questi “incerti” modelli che si producono le allerte per il sistema di Protezione Civile, ad esempio. E sono le previsioni di questi modelli che forniscono l’input ai modelli idrologici per la previsione delle piene fluviali, oppure a quelli della qualità dell’aria oppure dello stato del mare. La possibilità di prendere decisioni corrette è particolarmente rilevante, a mio parere, in questo contesto.

Con il nuovo approccio del “valore economico” delle previsioni meteo o delle simulazioni climatiche (Katz e Murphy, 2000: “Economic Value of Weather and Climate Forecasts”, Climate Change, volume 45, 1573-1480) il “focus” non è più solo dato tanto alla “Qualità” di una previsione (o di una simulazione climatica) ma anche (e forse più) al suo “Valore” o “Utilità”, che si traduce nella capacità di quella previsione (o di quella simulazione climatica) di far prendere ad un policymaker decisioni più corrette di quanto potrebbe fare senza ricorrere a questi supporti modellistici. In questa ottica e a parità di qualità, una previsione può essere di più alto o basso valore a seconda dell’utente a cui è diretta. Per chiarire il punto, ogni policymaker che deve assumere delle decisioni applica sempre un ragionamento di tipo costo/beneficio nel quale confronta i costi di un’azione mitigatrice di un danno potenziale causato, ad esempio, da un evento meteo pericoloso, con il costo del danno che potrebbe avere se non decidesse di applicare alcuna azione mitigatrice a contrasto di quell’evento meteo pericoloso previsto. Pertanto, la probabilità di occorrenza di un evento meteo pericoloso si compone con il rapporto tra il “Costo” dell’azione mitigatrice e il “Danno” causato dalla non azione e permette di ottimizzare la scelta.

Tornando ai modelli GCM del clima, al giorno d’oggi sappiamo abbastanza quali siano i loro limiti, gli errori sistematici, dove si collocano arealmente. In sostanza conosciamo abbastanza bene i limiti di utilizzo di questi strumenti. E sappiamo anche che con tutte le diversità e le incertezze che caratterizzano questi strumenti, accade lo stesso che per certi indicatori del clima molti GCM offrano scenari concordi e possano offrire simulazioni di accettabile “Valore”, e possono essere quindi già in grado di far prendere decisioni corrette. Ad esempio tutti i GCM prevedono globalmente un aumento considerevole di temperatura, nei prossimi decenni. Dovremmo tenerne conto in qualche modo? Si potrebbe obiettare che quello che è forse vero a scala globale è meno vero a scala regionale. Questa asserzione è abbastanza vera; tuttavia accade che su certe sotto-aree del pianeta (per non fare un esempio che ci tocchi: il Mediterraneo) gli stessi sistemi di modellazione globale dicano lo stesso cose analoghe. Ad esempio risulta incontrovertibile che il bacino del Mediterraneo avrà in futuro delle estati più calde e, parallelamente, una diminuzione delle piogge (si veda la figura sottostante, tratta dal cap. 11 dell’IPCC-AR4-WG1.


(Fonte: Figura 11.5 IPCC AR4-WG1-cap.11, pag.875)
Cambiamenti di temperatura e precipitazione in Europa da simulazioni di 21 Modelli Globali con scenario A1B. Riga in alto, da sinistra a destra: cambiamenti della temperatura (°C) media annuale, in Inverno (DJF) ed Estate tra il 1980-1999 e il 2080-2099, mediata sui 21 modelli. Riga in mezzo: come la riga in alto ma per il rapporto tra le precipitazioni (%) del 2080-2099 e quelle del periodo 1980-1999. Riga in basso: numero di modelli (sul totale di 21) in cui si prevede un aumento di precipitazione.

E quindi, stante l’informazione di possibili estati più calde e meno piovose, non si potrebbe iniziare a fare qualcosa di più per diminuire il rischio desertificazione in aree del sud-Italia ? Oppure, non abbiamo già sufficienti conoscenze per iniziare a proporre politiche di miglioramento nell’uso delle risorse idriche che potrebbero calare in uno scenario del genere? Oppure ancora non potremmo accelerare quelle azioni di salvaguardia del territorio finalizzate a minimizzare il rischio di alluvioni sui piccoli bacini idrografici italiani, visto che potremmo avere in futuro, con “buona probabilità”, delle piogge di più breve durata e di più elevata intensità? Sicuramente siamo già in grado di quantificare il rapporto costo/perdita di possibili azioni di adattamento o mitigazione alternative; è allora necessario comporre questa conoscenza con le probabilità di occorrenza, ancorché incerte, degli scenari climatici, per avere uno spettro di azioni da adottare che siano le più efficaci e utili possibile.

Tornando all’altro aspetto connesso al ruolo dello scienziato che viene toccato nell’intervista, che non è disgiunto dalle argomentazioni fatte sino ad ora, anche qui è necessario un approfondimento. Nell’intervista si afferma che se per un politico l’uso del principio di prudenza può anche essere cosa saggia, per uno scienziato così non dovrebbe essere. Egli deve basare le sue tesi solo su fatti certi e non su supposizioni incerte. Sulla base di questa asserzione mi riesce difficile capire a pieno quale sia il ruolo di uno scienziato oggi. E ancora, nel contesto delle problematiche aperte dal problema dei cambiamenti climatici, è bene che uno scienziato non usi un principio di precauzione nei suggerimenti che fornisce ai politici? E’ divenuta veramente così neutrale la scienza? Più ragionevolmente, io penserei invece che un principio di precauzione si debba sempre usare e debba basarsi su una concreta analisi di quel rapporto costo/danno di cui ho parlato prima. E quindi, ritornando alla discussione sull’uso dei modelli, anche tenendo conto delle incertezze che i sistemi di previsione oggi hanno, risulta prudente affermare che, pur essendo plausibile che qualcosa potrebbe accadere al sistema climatico ma non avendo adesso delle certezze, è corretto non fare nulla per mitigare gli impatti del Climate Change?

Ma avremo mai delle certezze?

Credo sia fuori discussione che l’intera storia della scienza abbia ormai sentenziato che non esistono delle certezze, ma che nel tempo la conoscenza evolve ed è possibile solo proporre delle migliori approssimazioni della realtà. Con Newton e la sua teoria della gravitazione universale si pensava ci fosse la spiegazione “di tutto”, poi è venuto Einstein e la relatività generale ha rimesso in discussione non poche di quelle certezze. E lo stesso si potrebbe dire della rivoluzione della meccanica quantica rispetto alle conoscenze classiche che sino all’inizio del novecento hanno dominato il pensiero scientifico globale.

In conclusione, può oggi uno scienziato dissociarsi dall’obbligo di entrare nel vivo delle decisioni su un tema come il Climate Change? E come potrebbe decidere un policymaker cosa fare se lo scienziato su cui si appoggia non prende posizione perché logorato dalla mancanza di certezze?

Testo di Carlo Cacciamani

31 responses so far

Dicembre 2008 e gennaio 2009: eccezionali veramente?

Sintesi: l’analisi a scala globale dei dati relativi al bimestre dicembre ’08-gennaio ’09 appena trascorso mostra che tale periodo non può essere considerato eccezionale non solo dal punto di vista climatico (in quanto una singola stagione non dice nulla sul clima), ma neppure da quello meteorologico, in quanto le anomalie termiche e pluviometriche riscontrate hanno riguardato soltanto una piccola porzione del territorio nazionale (peraltro compatibili con quelle verificatesi negli anni precedenti) mentre a livello globale l’anomalia termica e’ addirittura stata positiva.

a

Fa freddo. È questo il commento un po’ generale che imperversa ormai dall’inizio di dicembre. Ma non vorrei qui ripetere per l’ennesima volta quale sia la differenza tra tempo meteorologico e clima (concetto già ribadito più volte nei post precedenti), quanto piuttosto insistere sul fatto che occorre sempre analizzare i dati nella loro globalità, non in singole stazioni. Infatti, se anche l’inverno 2008-09 avesse fatto registrare in qualche stazione italiana, o anche, al limite, in tutta Italia, i valori minimi di temperatura delle serie storiche (cosa che, come vedremo, non è vera), non si potrebbe comunque parlare di cambiamento del clima, ma solo di un evento o di una serie di eventi, al limite insoliti; inoltre, analizzando la situazione globale, si scoprirebbe che questo evento probabilmente è bilanciato da una altrettanto significativa anomalia calda in altre zone del mondo.
Il mio obbiettivo è quindi quello di rispondere alla domanda: “quest’anno è stato freddo o no?” facendo chiarezza ed esaminando i dati disponibili.
Non essendo ancora terminato l’inverno (che meteorologicamente finisce a fine febbraio), possiamo commentare i primi due mesi dell’inverno meteorologico 2008-2009 usando le mappe meteorologiche che ho creato utilizzando i dati messi a disposizione dalla NOAA (National Oceanic and Atmospheric Administration) su questo sito. È un giochino interessante e chiunque può divertirsi facendosi la propria climatologia: si possono visualizzare una ventina di variabili sulla porzione del globo terrestre che più interessa, alla risoluzione spaziale di 2.5 gradi in longitudine e latitudine (cioè circa 125 Km alle nostre latitudini, non sufficiente per i dettagli locali ma sufficiente per gli andamenti generali), e si può calcolare l’anomalia della grandezza considerata, cioè la differenza fra il valore registrato in un certo periodo e il valore medio su un periodo di riferimento. NOAA ha scelto come periodo di riferimento il 1968-1996, che è un po’ diverso dal trentennio abitualmente scelto come riferimento 1961-90 (volendo, con un po’ di tempo in più si può scegliere il periodo che si vuole) ma le differenze non sono poi così significative. Ho quindi creato i grafici delle anomalie di temperatura e precipitazione relative agli ultimi due mesi di dicembre 2008 e gennaio 2009 confrontandoli con le medie.
Cominciamo a vedere la mappa che riporta le anomalie a scala globale (Fig. 1 – i colori blu e rosso scuro evidenziano, come nei rubinetti, le zone rispettivamente con anomalia negativa e positiva).

T superf dic08-gen09

Figura 1 – Anomalia di temperatura superficiale sul globo terrestre 1 Dicembre 2008 – 30 Gennaio 2009 rispetto al periodo di riferimento 1968-1996. Grafico generato dalle informazioni NOAA.

Beh, sicuramente non si può dire che, a scala globale, sia stato un bimestre freddo. Ci sono, è vero, dei minimi (Antartide, Stati Uniti, Cile), ma anche dei massimi, in particolare sulle regioni del Polo Nord, nei pressi delle isole Svalbard (fino a 12 °C!). Facendo uno zoom sull’emisfero Nord (Fig. 2), si notano delle ampie zone con anomalie positive sull’Africa, sulle zone polari, sul Pacifico, e due piccole aree al centro degli Stati Uniti e sull’Ungheria, mentre sono presenti alcune zone di anomalia negativa sul Canada e sugli Stati Uniti orientali, nei pressi dell’Alaska, e in altre quattro piccole zone distribuite tra Europa, Africa settentrionale e Asia. Come chiunque può vedere, l’estensione delle aree con anomalia positiva è nettamente maggiore di quelle con anomalia negativa, per cui si può dire che, per quanto riguarda l’emisfero nord, il bimestre considerato è stato più caldo della norma.

T emisfero Nord dic08-gen09

Figura 2 – Anomalia di temperatura superficiale sull’emisfero Nord nel periodo 1 Dicembre 2008 – 30 Gennaio 2009 rispetto al periodo di riferimento 1968-1996. Grafico generato dalle informazioni NOAA.

I dettagli sulla zona europea (Fig. 3) e sull’Italia (Fig. 4) riportano un numero maggiore di isolinee e mostrano una zona con anomalie negative di temperatura con i minimi sulla Francia centrale e sul Marocco estesa dalla Germania meridionale fino all’Africa nord-occidentale, e che lambisce anche l’Italia nordoccidentale. Il resto dell’Italia si trova in una zona intermedia che confina con un’area molto ampia di anomalie termiche positive che si estende dal Mediterraneo orientale verso nord.

T superf europa dic08-gen09

Figura 3 – Anomalia di temperatura superficiale sull’Europa nel periodo 1 Dicembre 2008 – 30 Gennaio 2009 rispetto al periodo di riferimento 1968-1996. Grafico generato dalle informazioni NOAA.

T superf Italia dic 08-gen09

Figura 4 – Anomalia di temperatura superficiale sull’Italia nel periodo 1 Dicembre 2008 – 30 Gennaio 2009 rispetto al periodo di riferimento 1968-1996. Grafico generato dalle informazioni NOAA.

Dunque, si è effettivamente registrata un’anomalia di temperatura lievemente negativa su una parte del territorio nazionale, del resto confermata anche dall’analisi condotta dal Centro Nazionale di Meteorologia e Climatologia Aeronautica sul Bollettino Climatico di Gennaio 2009. Quanto è significativo questo dato? Per rispondere a questa domanda, ho generato le mappe relative alle anomalie di temperatura sul territorio nazionale e sulle aree limitrofe relative agli ultimi 12 periodi invernali dicembre-gennaio (reperibili su questo sito). La loro analisi mostra chiaramente che questo bimestre non è stato né l’unico né il più freddo nel periodo considerato. Se è vero, infatti, che ci sono stati dei bimestri nettamente più caldi (1997-98, 2000-01, e il famigerato 2006-07), è anche vero che non mancano gli anni con anomalie negative (1998-99 solo sul sud Italia, 1999-2000, 2001-2, 2003-4, 2004-5 solo sul nord Italia, e poi il bimestre 2005-6, molto più freddo su tutto il territorio nazionale rispetto a quello attuale).
Per un maggiore dettaglio su una singola località, tra tutte le possibili scegliamo Torino, un po’ perché ci abito, ma soprattutto perché, grazie all’encomiabile meticolosità ventennale di Luca Mercalli e Gennaro Di Napoli, culminato nel libro “Il clima di Torino” (un’enciclopedia di oltre 900 pagine, disponibile su questo sito della Società Meteorologica Italiana) appena pubblicato, sono disponibili i dati di temperatura dal 1753, di pioggia giornaliera dal 1802 e di neve cumulata giornaliera dal 1787 (quest’ultima è la serie più lunga al mondo), tutte omogeneizzate, e le analisi su tali dati. Paragonando la temperatura invernale a Torino con la media relativa al periodo 1961-90 (Fig. 5), si osserva come sostanzialmente si sia verificata una leggera anomalia negativa, pari rispettivamente a –0.4°C per le minime ed a –0.7°C per le massime, dovuta principalmente alle irruzioni fredde dei primi 12 giorni di dicembre e da Natale all’11 gennaio.

T Torino

Figura 5 – Andamento delle temperature minime e massime giornaliere rilevate a Torino nel periodo 1 novembre 2008 – 16 febbraio 2009 paragonate con i valori medi relativi al trentennio 1961-1990. Dati forniti dalla Società Meteorologica Italiana, elaborazioni a cura di Daniele Cat Berro e Luca Mercalli.

La stima provvisoria della temperatura media a Torino relativa al trimestre invernale (dicembre-febbraio) è di 3.3°C (manca però metà febbraio), simile all’inverno 2005-06 (3.4 °C) ed inferiore alla media 1961-90 (3.8 °C), come si può vedere nella Fig. 6.

T Torino inverno

Figura 6 – Andamento delle temperature medie del trimestre invernale dicembre-febbraio durante l’intero arco delle misure relative alla serie storica di Torino. Dati forniti dalla Società Meteorologica Italiana, elaborazioni a cura di Daniele Cat Berro e Luca Mercalli.

E per quanto riguarda le precipitazioni, che cosa si può dire? Analizzando i grafici delle anomalie del rateo di precipitazione (in mm/giorno) sull’Italia (Fig. 7), si nota l’evidente area di anomalia positiva (colore blu) che coinvolge l’intero territorio nazionale nell’ultimo bimestre, con un picco evidente sulle regioni meridionali italiane: il 2008-09 è stato effettivamente un bimestre abbastanza piovoso (o nevoso, in certe zone).

Piogge Italia

Figura 7 – Anomalia di rateo di precipitazione (mm/giorno) sull’Italia nel periodo 1 Dicembre 2008 – 30 Gennaio 2009 rispetto al periodo di riferimento 1968-1996. Grafico generato dalle informazioni NOAA.

Ma il confronto con gli altri 12 bimestri invernali riportati su questo sito per gli ultimi 12 bimestri invernali dicembre-gennaio mostra che, sulle regioni meridionali italiane, anomalie simili si sono verificate anche in altri anni (in particolare nei quattro inverni consecutivi dal 2002-3 al 2005-6, e nel 2007-8), mentre per quanto riguarda il nord Italia le anomalie positive sono state effettivamente molto più rare.
A Torino, in particolare (Fig. 8), dal 1° novembre al 20 febbraio, si sono accumulati ben 518.7 mm, dovuti principalmente ai due eventi di inizio novembre (120 mm) e metà dicembre (211 mm), e tale quantitativo rappresenta il record di tutta la serie per quanto riguarda il periodo novembre-febbraio (il record precedente fu registrato nel lontano 1825-26, con 509.4 mm).

Pioggia e  neve Torino 08-09

Figura 8 – Precipitazioni (pioggia e neve fusa) giornaliere accumulate nel periodo novembre 2008 – febbraio 2009 registrate a Torino: confronto con la media del trentennio 1961-90 e con il massimo quadrimestrale precedente. Dati forniti dalla Società Meteorologica Italiana, elaborazioni a cura di Daniele Cat Berro e Luca Mercalli.

Le temperature più rigide e le precipitazioni più abbondanti a Torino hanno avuto come conseguenza un incremento notevole del numero e dell’intensità delle nevicate: a fronte di una media di 7.2 giorni con nevicate nel periodo 1961-90, nel 2008-09 si è visto nevicare in 14 giornate (Fig. 9), valore nettamente inferiore al massimo storico di 30 episodi del 1837 (ma in tale epoca si stava uscendo dalla Piccola Età Glaciale), ma nettamente superiore a quelli degli ultimi anni (era dal 1986 che non nevicava così frequentemente: 16 giorni).

giorni neve Torino

Figura 9 – Giorni con nevicate nel periodo novembre 2008 – febbraio 2009 a Torino e quantitativo di neve accumulata giornaliera. Dati forniti dalla Società Meteorologica Italiana, elaborazioni a cura di Daniele Cat Berro e Luca Mercalli.

Il manto totale depositatosi in città nel trimestre dicembre-febbraio è stato di 66 cm (di cui 32 cm tra il 6 e l’8 gennaio), valore nettamente superiore alla media 1961-90 (28 cm) ed ai valori tipici degli ultimi anni (quando in ben tre casi – nel 1988-89, 1989-90 e 2006-07 – non nevicò affatto in città: si veda la Fig. 10).

neve Torino

Figura 10 – Neve fresca accumulata nell’anno idrologico registrata presso gli osservatori della serie storica di Torino dal 1787 a oggi. Dati forniti dalla Società Meteorologica Italiana, elaborazioni a cura di Daniele Cat Berro e Luca Mercalli.

L’analisi appena condotta, sia pure parziale poiché la stagione non è ancora terminata, mostra comunque che il bimestre appena trascorso non può essere considerato eccezionale non solo dal punto di vista climatico (in quanto una singola stagione non dice nulla sul clima), ma neppure da quello meteorologico, in quanto le anomalie riscontrate sono compatibili con quelle verificatesi negli anni precedenti.
L’Italia settentrionale, ed in particolare quella nordoccidentale, ha registrato temperature leggermente inferiori alla norma e precipitazioni superiori alla norma, almeno per quanto riguarda gli ultimi 12 bimestri invernali, fatto che ha comportato un incremento nel numero delle nevicate anche a quote di pianura. I valori termici registrati in Italia nordoccidentale nello scorso inverno si sono avvicinati alle medie relative al periodo di riferimento 1961-90 e, forse proprio per questo motivo, sono state percepite come insolitamente fredde se paragonate con quelle registrate negli ultimi inverni. L’Italia meridionale ha invece registrato sia temperature sia, soprattutto, precipitazioni superiori alla norma, cosa peraltro già verificatasi frequentemente negli ultimi 12 anni.

Testo di: Claudio Cassardo

13 responses so far

Perchè sono attendibili le serie storiche dei dati di temperatura globale

L’evidenza osservativa di un significativo incremento della temperatura media dell’aria in prossimità della superficie terrestre costituisce un dato importante nel contesto dell’attuale dibattito sull’effetto climalterante delle emissioni antropiche. Questo incremento, ben evidenziato dalla figura 1, è sovrapposto ad una significativa variabilità interannuale nonché ad una importante variabilità su scala decennale, ma è comunque chiaramente identificabile, tanto che 17 dei venti anni più caldi dell’intero periodo coperto dalle osservazioni strumentali cadono nel ventennio 1988-2007.

Figura 1: andamento della temperatura media globale in prossimità della superficie terrestre nel periodo 1856-2007. I valori sono espressi come scarti rispetto ai valori medi calcolati sul periodo 1961-1990. Fonte: University of East Anglia.

I dati rappresentati in figura 1 suscitano spesso numerosi interrogativi da parte di chi non si occupa professionalmente della ricostruzione o dell’analisi di serie storiche di dati meteorologici, in quanto non è facile capire come si possa effettivamente disporre di un numero di misure termometriche di alta qualità così elevato da permettere la ricostruzione dell’evoluzione del valor medio planetario della temperatura dell’aria per un periodo di oltre 150 anni.

In realtà lo sviluppo delle osservazioni meteorologiche affonda le sue radice in un passato molto più lontano di quanto non si creda comunemente e la prima rete sinottica, ovvero la rete del Cimento, risale addirittura al ‘600. A questa prima rete, che ha continuato ad operare per circa 15 anni, ne hanno fatto seguito molte altre, anche se fino alla seconda metà dell’800 tutte le iniziative hanno avuto una durata abbastanza limitata nel tempo e sono sempre state condotte in modo pioneristico e in assenza di metodologie standardizzate riconosciute universalmente.

Il primo tentativo di pervenire realmente ad un sistema di osservazioni meteorologiche standardizzato a scala planetaria è probabilmente costituito da una conferenza tenutasi a Bruxelles nel 1853. Questa conferenza viene considerata come il primo passo verso la cooperazione meteorologica internazionale, cooperazione che si è poi rafforzata rapidamente negli anni successivi fino a portare alla fondamentale conferenza di Vienna (1873), nel cui ambito è nata la International Meteorological Organisation (IMO), ovvero l’organizzazione che si è poi evoluta nella attuale World Meteorological Organisation (WMO).

La lettura degli atti di questa conferenza e delle conferenze che si sono succedute nei decenni successivi evidenzia in modo molto chiaro i notevoli sforzi prodotti negli ultimi tre decenni dell’800 per pervenire ad una reale standardizzazione delle osservazioni meteorologiche.

È peraltro importante sottolineare come già alla fine dell’800 le osservazioni non includessero solo i Paesi più avanzati, ma coprissero una significativa frazione dell’intero Pianeta, comprese alcune aree oceaniche che venivano coperte grazie al traffico marittimo. Nonostante ciò la copertura era comunque ancora lontana dall’essere globale e vi era la completa mancanza di osservazioni sistematiche in quota. Questi limiti vengono superati solo nella seconda parte del ventesimo secolo, dapprima con lo sviluppo di una rete planetaria di misure da termosondaggio quindi, in tempi più recenti, con lo sviluppo delle misure da satellite.

L’esistenza di una rete planetaria di osservatori meteorologici non è comunque l’unica condizione necessaria per poter studiare l’evoluzione a lungo termine del clima della Terra. Tale attività richiede infatti anche che i dati siano facilmente accessibili e che su di essi vengano effettuate una serie di analisi volte ad accertarne la qualità, l’omogeneità e la reale capacità di rappresentare l’intero Pianeta.

Il primo ricercatore che ha cercato di fronteggiare questi problemi è probabilmente stato Köppen che, tra il 1870 ed il 1880, ha organizzato ed elaborato un dataset di oltre 100 stazioni osservative, con l’obiettivo di produrre la prima stima dell’evoluzione della temperatura a scala globale della storia della meteorologia. Successivamente, la realizzazione di ricerche di questo tipo è stata notevolmente facilitata da una risoluzione della International Meteorological Organisation del 1923 che ha avviato una sistematica raccolta e pubblicazione di tutte le più significative serie di dati termometrici, pluviometrici e barometrici allora esistenti al mondo. Questa risoluzione ha portato al “World Weather Records”, una monumentale opera con serie di dati a risoluzione mensile relative a centinaia di stazioni di osservazione sparse in tutto il mondo. Questa raccolta ha poi continuato a venire regolarmente aggiornata nei decenni successivi e, a partire dagli anni ’60, i dati sono anche stati digitalizzati. Ai dataset globali vanno poi aggiunti numerosi dataset a carattere più locale (da nazionale a continentale), creati soprattutto nel corso degli ultimi decenni, nell’ambito di un grande numero di progetti volti a recuperare un frazione sempre più consistente dell’enorme patrimonio di informazioni che spesso giacciono ancora inutilizzate in archivi cartacei sparsi in tutto il Pianeta.

È quindi naturale come le stime dell’evoluzione a lungo termine della temperatura dell’aria in prossimità della superficie terrestre che si sono succedute al primo tentativo di Köppen si siano avvalse della disponibilità di una base di dati sempre più ampia, passando da un centinaio a 3000-4000 stazioni. A questi dati, relativi alle terre emerse, si aggiungono poi oggi numerose serie relative alle aree oceaniche. Esse consistono sostanzialmente di dati relativi alla temperatura superficiale dell’acqua, variabile che viene solitamente assunta come ben rappresentativa della temperatura dell’aria sugli oceani. Questi dati sono raccolti da lungo tempo grazie a navi mercantili e militare e, più recentemente, anche grazie ad una rete planetaria di stazioni ancorate a boe oceaniche.

Le più moderne stime dell’evoluzione a lungo termine della temperatura media planetaria dell’aria in prossimità della superficie terrestre si basano quindi sull’integrazione dei dati di diverse migliaia di stazioni osservative con una vasta mole di dati relativi alle aree oceaniche. Esse si avvalgono inoltre di un articolato insieme di procedure per il controllo della qualità e dell’omogeneità dei dati, nonché di tecniche di spazializzazione molto efficaci che consentono di gestire i problemi connessi con la distribuzione spaziale non uniforme delle serie disponibili (si veda ad esempio l’articolo di Brohan et al., 2006 “Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850” – J. Geophysical
Research ). Queste procedure, unitamente alla vasta letteratura disponibile sull’argomento, consentono oggi anche di valutare l’incertezza delle ricostruzioni ottenute. Essa è dovuta, da una parte al fatto che le serie storiche di dati meteorologici sono influenzate da disomogeneità ed errori indotti sia dagli strumenti di misura che dalle metodologie di osservazione e, dall’altra, dal fatto che, per quanto numerose, le misure disponibili non sono realmente rappresentative dell’intero Pianeta. Proprio per questa ragione una corretta ricostruzione dell’evoluzione della temperatura globale deve essere accompagnata da un’indicazione del relativo margine di incertezza. Questa indicazione è effettivamente presente nelle ricostruzioni più moderne e grazie ad essa è possibile per esempio affermare, come indicato nel quarto assessment report dell’IPCC, che il riscaldamento globale nel periodo 1906-2005 è stato di 0.74 ± 0.18 (°C), dove la cifra che segue la stima più probabile del trend indica l’intervallo entro il quale si ritiene che il trend abbia il 95% di probabilità di collocarsi effettivamente.

Il valore di incertezza relativamente contenuto delle stime relative al riscaldamento verificatosi nel corso dell’ultimo secolo è, come già visto, sicuramente frutto di sofisticate metodologie di analisi che consentono di massimizzare l’informazione che può essere estratta dai dati disponibili. Accanto a queste metodologie gioca però un ruolo fondamentale anche la buona qualità di molte delle serie osservative. La qualità delle osservazioni meteorologiche è infatti da lungo tempo un obiettivo fondamentale della comunità del settore; essa è peraltro sempre stata considerata con grande attenzione dall’Organizzazione Meteorologica Mondiale (si veda qui). Così, anche se esistono esempi di stazioni gestite e/o collocate in modo del tutto inadeguato, accanto ad esse vi è una grande maggioranza di situazioni nelle quali le osservazioni vengono effettuate in modo corretto e nelle quali viene prestata grande attenzione alle misure.

Testo di: Maurizio Maugeri

21 responses so far

Raffreddamento globale, ghiacci Artici, previsioni dell’IPCC

NOTA INFORMATIVA del Focal Point IPCC – Italia del 15 gennaio 2009.

La Redazione di www.climalteranti.it pubblica una nota informativa a cura di Sergio Castellari, inerente al dibattito sui cambiamenti climatici improvvisamente riaccesosi a seguito di alcune pubblicazioni apparse su importanti organi di informazione italiani.

In questi ultimi giorni sui media sono apparse notizie riguardo un rallentamento o blocco del riscaldamento globale a causa delle imponenti nevicate in varie zone Italiane e del pianeta e riguardo la forte crescita dei ghiacci marini Artici che sarebbero tornati ai livelli del 1979. Infine, alcuni articoli citano le “previsioni catastrofiche“ fatte dall’IPCC come ormai obsolete o anzi completamente errate (ad esempio qui, qui o qui).
E’ necessario fare alcuni chiarimenti.

Meteorologia e climatologia:

Bisogna stare molto attenti a non confondere una analisi meteorologica con una analisi climatica. Il sistema clima è un sistema complesso, che include l’atmosfera, gli oceani, le terre emerse, la criosfera e la biosfera. Generalmente il clima viene definito come “il tempo meteorologico medio” su scale temporali lunghe (almeno 30 anni). Quindi le condizioni climatiche vengono definite in termini di proprietà statistiche (ad esempio, il valore medio della temperatura atmosferica superficiale in una regione).
Quindi un cambiamento climatico può essere definito come una variazione significativa statisticamente dello stato medio del clima o della sua variabilità, persistente per un periodo esteso (tipicamente decenni o più). Un cambiamento climatico implica una variazione delle proprietà statistiche e non può essere associato ad un evento singolo (una alluvione, una tempesta di neve ecc.) Non ha senso la domanda: “L’alluvione in un dato luogo e giorno è causata da un cambiamento climatico?” Ha invece senso la domanda: “Un cambiamento climatico può comportare una aumentata probabilità che si verifichino fenomeni alluvionali?”
Quindi dare un senso climatico (fine del riscaldamento globale, inizio di un raffreddamento globale) ad una settimana di gelo in Italia significa fare una dichiarazione non basata su un corretto approccio scientifico.

Ma l’anno 2008 è stato veramente un anno freddo?

Questa è di nuovo una domanda generica, freddo rispetto a cosa e su quali scale temporali? Andando a vedere le due serie temporali di temperature media globali superficiali raccolte ed analizzate dal NCDC (National Climatic Data Center) della NOAA (National Ocean Atmophere Administration) (USA) e dal Met Office Hadley Centre (UK) si può chiaramente vedere che il 2008 non è stato un anno “freddo” in queste serie
temporali rispetto a medie a lungo termine. Il rapporto preliminare (perché ancora non considera il mese di dicembre 2008) del NCDC dichiara che l’anno 2008 potrà essere uno dei 10 anni più caldi dal 1880 (inizio della serie termometrica globale) rispetto alla media del 20esimo secolo. Inoltre il mese di novembre 2008 è stato il quarto novembre più caldo della serie globale dal 1880 e l’agosto 2008 si è posizionato al decimo posto come agosto più caldo nella serie temporale.
Questo trend è confermato anche dalla serie globale del Met Office Hadley Centre. Quasi tutti gli anni del nuovo millennio stanno tra i 10 anni più caldi di entrambi le serie termometriche globali. Negli ultimi 10 anni le temperature sono cresciute più lentamente rispetto ai decenni precedenti, ma ragionando su tempi lunghi è evidente un trend di crescita di temperature. Questo non significa che l’anno 2009 sarà necessariamente più caldo del 2008: il 2009 potrebbe essere l’anno più freddo dal 1980, ma il trend di crescita globale di temperature rimarrebbe se il 2010 ed il 2011 saranno di nuovo anni più caldi rispetto ad una media a lungo termine. Il valore di temperatura globale di un anno non può modificare una tendenza a lungo termine.

I ghiacci artici che tornano ai livelli del 1979:

Alcuni articoli stranieri ed italiani, citando i dati dell’University of Illinois’s Arctic Climate Research Center, hanno spiegato che l’estensione del ghiaccio marino artico è tornata a crescere ed ha raggiunto l’estensione del 1979. Intanto la crescita invernale del ghiaccio marino Artico è un normale processo stagionale: l’estensione diminuisce in estate e ricresce in inverno. Però negli ultimi anni come mostrato dal NSIDC (National Snow And Ice Data Center) (USA), qualcosa è cambiato. L’estensione di ghiaccio marino Artico (sea ice extent) ha raggiunto il record minimo nel settembre 2007, seguito dal settembre 2008 e settembre 2005, confermando che esiste un trend negativo nella estensione di ghiaccio marino estivo osservato negli ultimi 30 anni.

Se si cercano i dati dell’University of Illinois’s Arctic Climate Research Center al loro sito  si può arrivare al sito Criosphere Today del Polar Research Group – University of Illinois dove, controllando i grafici, si può vedere che l’estensione del ghiaccio marino (sea ice area) dell’Emisfero Nord nel dicembre 2008 non raggiunge il livello del 1979, mentre il sea ice area dell’Emisfero Sud nell’estate 2008 ha raggiunto il livello dell’estate 1979!

Per l’Artico il NSIDC ha comunicato il 7 gennaio (2008 Year-in-Review) che:
• l’estensione del ghiaccio marino (sea ice extent) nel dicembre 2008 è stata di 12.53 milioni di km2, 830,000 milioni di km2 di meno della media 1979 – 2000;
• il ghiaccio marino del 2008 ha mostrato una estensione ben sotto alla media (wellbelow- average ice extents) durante l’intero anno 2008;
• dal 12 al 19 dicembre 2008 la crescita stagionale di ghiaccio marino Artico si è interrotta probabilmente a causa di un sistema anomalo di pressione atmosferica combinato all’effetto delle temperature marine superficiali più calde nel Mare di Barents.

Le “previsioni” dell’IPCC:

Innanzitutto esistono vari tipi di modelli:
1. Modelli di previsione meteorologica operativa: grandi modelli computazionali, che integrano le equazioni del moto atmosferico, accoppiate con opportune rappresentazioni degli scambi di materia e calore con la superficie terrestre e che forniscono le previsioni meteorologiche;
2. Modelli di previsione stagionale: stessi modelli atmosferici, ma accoppiati a all’oceano e sono utilizzati per prevedere fenomeni come El Nino;
3. Modelli del Sistema Terra (Earth System Models): modelli dell’atmosfera ed oceano tra loro accoppiati, ma accoppiati anche ad altri modelli che rappresentano la superficie, il ghiaccio marino, la vegetazione, la chimica atmosferica, il ciclo del carbonio e gli aerosol.
Per gi studi dei possibili climi a 50 o 100 anni si usano i Modelli del Sistema Terra, ma in maniera diversa dai modelli di previsione meteorologica. Nel campo della predicibilità di un sistema come il sistema clima si possono avere due tipi di previsioni: “Previsioni di Primo Tipo” (o Problemi ai Valori Iniziali) e “Previsioni di Secondo Tipo” (o Problemi ai Parametri). Le cosiddette previsioni climatiche dell’IPCC sono previsioni del secondo tipo: dato il sistema clima soggetto a variazioni di un forzante esterno, sono previsioni delle variazioni delle proprietà statistiche del sistema clima al variare dei parametri esterni. Queste previsioni non dipendono dai valori iniziali, come le previsioni del Primo Tipo che sono poi le previsioni meteorologiche e che hanno un limite intrinseco a circa due settimane.

Queste previsioni climatiche si definiscono in realtà proiezioni climatiche e cercano di rispondere alle seguenti domande:

1. Assumendo che la composizione atmosferica vari secondo un certo scenario di emissione, allora quale sarà ad esempio tra 30, 50 e 100 anni la probabilità di avere una temperatura media più alta di 3°C rispetto a quella attuale?

2. Come sarà distribuita sul globo questa variazione della temperatura media prevista?

Queste proiezioni si possono chiamare anche scenari climatici, perché come variazione di forzanti esterni (gas serra ed aerosol) usano scenari di concentrazione che derivano da scenari di emissioni. Questi scenari di emissioni sono descrizioni plausibili dello sviluppo futuro delle emissioni di gas serra e aerosol, basate su un insieme coerente ed internamente consistente di assunzioni sulle forze che le guidano (soprattutto economiche, tassi di sviluppo tecnologico, andamento dei mercati, sviluppo demografico, ecc.).

E’ importante sottolineare che la dinamica caotica del clima terrestre e dei moti atmosferici pone un limite teorico alla possibilità di eseguire Previsioni del Primo Tipo. Infatti il sistema clima è un sistema fisico complesso con un comportamento non lineare su molte scale temporali e che include molte possibili instabilità dinamiche. Però la natura caotica del sistema clima non pone alcun limite teorico alla possibilità di eseguire Previsioni del Secondo Tipo. Quindi è più semplice eseguire Previsioni di Secondo Tipo (in altre parole previsioni climatiche di tipo statistico) per i prossimi 100 anni assumendo possibili variazioni dei forzanti esterni, che estendere di qualche giorno il termine delle previsioni meteorologiche.
Queste previsioni statistiche vengono effettuate in vari centri di modellistica climatica in varie parti del mondo (anche in Italia, ad esempio al Centro Euro-Mediterraneo per i Cambiamenti Climatici – CMCC) e fino ad oggi quasi tutti i modelli climatici del tipo Earth System Models hanno usato gli stessi scenari di emissioni chiamati IPCC-SRES al fine di poter confrontare i risultati. Questi scenari di emissioni sono molti e presuppongono diversi sviluppi socioeconomici a livello globale e quindi diversi livelli di emissioni al fine di poter“catturare” il possibile futuro climatico della Terra.

In conclusione, queste previsioni sono scenari climatici o proiezioni climatiche e non previsioni meteorologiche a lungo termine.

7 responses so far

« Prev

Translate